tPay SDK
tPay SDK Developer Integration Guide
Overview
tPay SDK provides AI agents with autonomous financial capabilities - essentially giving your agents the ability to open bank accounts and execute payments independently. This enables agents to make financial decisions and complete transactions as part of their autonomous decision-making process.
tPay SDK Architecture
graph TB A[Your AI Agent] --> B[Agent Decision Engine] B --> C[tPay SDK Tools] C --> D[Agent Identity] C --> E[Balance Management] C --> F[Autonomous Payment] C --> G[Transaction Tracking] D --> H[tRadar Compliance] E --> H F --> H G --> H H --> I[Multi-Chain Networks] I --> J[Solana] I --> K[XRPL] I --> L[Other Networks] M[Traditional Banking] -.->|Replace| C N[Manual Payments] -.->|Automate| F O[Human Oversight] -.->|Autonomous| B style A fill:#e1f5fe style C fill:#f3e5f5 style H fill:#e8f5e8 style I fill:#fff3e0
Core Capabilities
Digital Banking for Agents
- Agent Account Creation: Programmatically create financial identities for your agents
- Multi-Asset Support: Handle various cryptocurrencies (USDT, XRP, SOL, etc.)
- Real-time Balance Tracking: Query agent balances across multiple networks
Autonomous Payment Processing
- Direct Transfers: Agent-to-agent payments without human intervention
- Smart Routing: Automatic network selection and optimization
- Transaction Verification: Built-in compliance and fraud protection
Agent-to-Agent Commerce
- Dispute Resolution: Autonomous conflict resolution between agents
- Challenge Handling: Smart retry mechanisms for failed transactions
- Cross-Network Operations: Seamless payments across different blockchain networks
Installation & Setup
Prerequisites
System Requirements:
- Python 3.8 or higher
- Internet connection for API calls
- API credentials from tPay portal
Environment Setup:
# Create virtual environment (recommended)
python -m venv tpay_env
source tpay_env/bin/activate # On Windows: tpay_env\Scripts\activate
Installation Options
Option 1: Basic Installation (Synchronous)
pip install tpay
Option 2: Full Installation (Async Support)
pip install tpay[async]
# or
pip install tpay[all]
Option 3: Development Installation
# From /dist
pip install tpay-0.1.1.tar.gz[async]
Dependencies
Core Dependencies (Auto-installed):
requests>=2.25.1
- HTTP requests for sync operationspython-dotenv>=0.19.0
- Environment variable management
Optional Dependencies:
httpx>=0.24.0
- For async operations (with[async]
install)pydantic>=2.0.0
- Data validation (optional)
Step-by-Step Integration
Step 1: Get API Credentials
- Visit tPortal and create an account
- Create a new project and obtain:
API_KEY
- Your authentication keyAPI_SECRET
- Your secret keyPROJECT_ID
- Your project identifier
Step 2: Environment Configuration
Create a .env
file in your project root:
# .env file
TLEDGER_API_KEY=your_api_key_here
TLEDGER_API_SECRET=your_api_secret_here
TLEDGER_PROJECT_ID=your_project_id_here
TLEDGER_API_BASE_URL=https://api.t54.ai/api/v1
Step 3: Initialize SDK
import tpay
from dotenv import load_dotenv
import os
# Load environment variables
load_dotenv()
# Initialize tPay SDK
tpay.tpay_initialize(
api_key=os.getenv("TLEDGER_API_KEY"),
api_secret=os.getenv("TLEDGER_API_SECRET"),
project_id=os.getenv("TLEDGER_PROJECT_ID"),
base_url=os.getenv("TLEDGER_API_BASE_URL"),
timeout=30 # Optional: request timeout in seconds
)
print("tPay SDK initialized successfully!")
Step 4: Create Agent Financial Identity
# Create a new agent with financial capabilities
agent_data = tpay.create_agent(
name="Shopping Assistant Agent",
description="Autonomous shopping agent with payment capabilities",
agent_daily_limit=1000.0, # Daily spending limit
agent_type="autonomous_agent"
)
if agent_data:
agent_id = agent_data['id']
print(f"Agent created with ID: {agent_id}")
else:
print("Failed to create agent")
Step 5: Register Financial Tools
# Create tPay financial tools for your agent
balance_tool = tpay.tpay_toolkit_balance()
payment_tool = tpay.tpay_toolkit_payment()
# Get tool definitions for LLM integration
financial_tools = tpay.get_all_tool_definitions()
print(f"Registered {len(financial_tools)} financial tools")
Step 6: Integrate with Your Agent
from openai import OpenAI
# Your existing agent tools
custom_tools = [
{
"type": "function",
"function": {
"name": "search_products",
"description": "Search for products to purchase",
"parameters": {
"type": "object",
"properties": {
"query": {"type": "string"}
}
}
}
}
]
# Add tPay financial capabilities
all_tools = custom_tools + financial_tools
# Create agent with financial capabilities
client = OpenAI(api_key="your_openai_key")
def create_financial_agent():
return client.chat.completions.create(
model="gpt-4",
messages=[
{
"role": "system",
"content": """You are an autonomous agent with financial capabilities.
Available financial tools:
get_agent_balance(agent_id) - Check agent's current balance
create_payment(agent_id, receiving_agent_id, amount, currency, settlement_network) - Execute payments
You can autonomously:
- Check your financial capacity before making decisions
- Execute payments to complete transactions
- Handle payment challenges and retries
Make financial decisions independently based on user needs and available balance."""
}
],
tools=all_tools,
tool_choice="auto"
)
Step 7: Execute Financial Operations
# Tool execution handler
def execute_financial_tool(tool_name: str, args: dict):
"""Execute financial tools called by your agent"""
if tool_name == "get_agent_balance":
return balance_tool(**args)
elif tool_name == "create_payment":
# Set default parameters if not provided
if "currency" not in args:
args["currency"] = "USDT"
if "settlement_network" not in args:
args["settlement_network"] = "solana"
return payment_tool(**args)
else:
raise ValueError(f"Unknown financial tool: {tool_name}")
# Example: Agent checks balance before making a purchase
balance_result = execute_financial_tool("get_agent_balance", {
"agent_id": agent_id
})
print(f"Agent balance: {balance_result}")
# Example: Agent executes autonomous payment
payment_result = execute_financial_tool("create_payment", {
"agent_id": agent_id,
"receiving_agent_id": "merchant_agent_123",
"amount": 25.0,
"currency": "USDT",
"settlement_network": "solana"
})
print(f"Payment result: {payment_result}")
Complete End-to-End Example
Please check more Use Cases we provide as a guidance.
Async Integration (Advanced)
For high-performance applications requiring concurrent operations:
import asyncio
import tpay
async def async_agent_operations():
"""Demonstrate async financial operations"""
# Initialize SDK (same as sync)
tpay.tpay_initialize(...)
# Create multiple agents concurrently
agents = await asyncio.gather(
tpay.async_create_agent("Agent 1", "Shopping assistant"),
tpay.async_create_agent("Agent 2", "Trading assistant"),
tpay.async_create_agent("Agent 3", "Payment processor")
)
# Check all agent balances concurrently
balances = await asyncio.gather(
tpay.async_get_agent_asset_balance(agents[0]['id'], "solana", "USDT"),
tpay.async_get_agent_asset_balance(agents[1]['id'], "solana", "SOL"),
tpay.async_get_agent_asset_balance(agents[2]['id'], "xrpl", "XRP")
)
print("All operations completed concurrently!")
return agents, balances
# Run async operations
asyncio.run(async_agent_operations())
Security & Compliance
Automatic Audit Trail
# All financial operations are automatically audited
@tpay.taudit_verifier
def audited_financial_operation():
"""
This function is automatically:
- Tracked and logged
- Compliance-verified
- Cryptographically signed
- Risk-assessed
"""
pass
# Agent tool calls are automatically tracked
@tpay.tradar_verifier
def tracked_tool():
"""
Tool usage is automatically:
- Monitored for behavior patterns
- Recorded for analytics
- Verified for authenticity
"""
pass
Error Handling
from tpay.exceptions import TPayError, TPayAPIError
try:
payment_result = payment_tool(
agent_id="agent_123",
receiving_agent_id="merchant_456",
amount=100.0
)
except TPayAPIError as e:
print(f"API Error: {e.message}")
print(f"Status Code: {e.status_code}")
except TPayError as e:
print(f"tPay Error: {e}")
except Exception as e:
print(f"Unexpected error: {e}")
Production Deployment
Environment Setup
# production.py
import tpay
import logging
# Configure logging for production
logging.basicConfig(level=logging.INFO)
# Production initialization
tpay.tpay_initialize(
api_key=os.getenv("TLEDGER_API_KEY"),
api_secret=os.getenv("TLEDGER_API_SECRET"),
project_id=os.getenv("TLEDGER_PROJECT_ID"),
base_url="https://api.t54.ai/api/v1", # Production URL
timeout=60 # Longer timeout for production
)
Key Concepts
Agent Autonomy
Your agents gain the ability to make financial decisions independently:
- Balance-aware decisions: Agents check their financial capacity before acting
- Autonomous transactions: Complete payments without human intervention
- Smart rejection handling: Automatically retry failed transactions with enhanced data
Integration Philosophy
The SDK is designed to augment your existing agent capabilities:
- Non-intrusive: Add financial capabilities without changing core agent logic
- Tool-based: Financial operations are exposed as callable tools
- Autonomous: Agents decide when and how to use financial capabilities
Next Steps
- Study Use Cases: Check out our Shopping Assistant Use Case to see real-world implementation
- Test Integration: Start with small transactions in development mode
- Scale Up: Implement async operations for production workloads
- Monitor: Use built-in analytics to optimize agent financial behavior
Ready to give your AI agents financial superpowers? Start building with tPay SDK today!
Updated about 1 month ago